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Abstract. The variational approximations to the partition function of a particle interacting 
with systems of disordered scatterers, presented by Luttinger for uniformly random systems 
and generalised by the author to systems with arbitrary positional disorder, are used to carry 
out explicit calculations on one-dimensional model systems. The models consist of uniform 
random configurations of S functions with a given density which are constrained by a 
two-particle correlation preventing a closer approach than specified for any pair. The 
results are used to calculate approximations to the densities of states for such systems with 
reasonable and interesting results. 

1. Introduction 

Luttinger (1976) proposed a variational method for approximating the partition 
function, at arbitrary temperature, of a particle interacting with identical scatterers 
positioned ‘randomly,’ with uniform probability, with some average density; each 
scatterer interacts with the particle via a short-ranged potential without bound states. 
Averages were performed analytically over all ‘random configurations’ of the same 
average density. The following year, I was able to generalise that formulation to include 
arbitrary correlations among the positions of the scatterers in order to allow cal- 
culations on arbitrary positionally disordered systems of a given density (Hernandez 
1977). Although Luttinger was able to show that the variational estimate became 
asymptotically exact for high and low temperatures, no systematic program of cal- 
culations has been reported to test the method in the intermediate regime and to 
explore the difficulties of calculations with it for specific systems. Such a program has 
been initiated and preliminary results are reported herein; the calculations are further 
used to calculate approximate densities of states. 

The model system chosen is the one-dimensional array of repulsive 6-function 
scatterers on which only a short-range correlation is imposed to prevent any pair of 
scatterers from approaching any closer than some specified distance?. It should be 
noted that this problem, in three dimensions, presents no additional computational 
problems since the inherent spherical symmetry makes the problem effectively one 

i In the notation of Hernandez (1977), C2(x, x ’ )  = C2(1x - x ’ i )  = -1 for Ix - x ’ /  < d,  d / ( d ’  - d )  for d < Ix - x ’ I  c 
d’ and 0 elsewhere. The limit d ‘ + a  is taken. It has been assumed that C, =0, n > 2 ,  which is a good 
approximation for small packing fraction ( p d ) .  However, it results in an unphysical treatment of clusters in 
which three or more atoms mutually overlap. Work is in progress to include such clusters correctly or to 
justify, in detail, their neglect. 
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dimensional for calculational purposes. The main reason for choosing this one- 
dimensional problem is that the simplest ordered arrays constitute the Kronig-Penney 
model whose solutions are well known (Merzbacher 1970). Further, by letting the 
effective diameter ( d )  of the atoms (distance of closest approach) vary from zero to the 
reciprocal of the average density ( p ) ,  the problem under consideration varies from the 
‘random’ case ( d  = 0) to the completely ordered one (pd = 1). The last statement 
follows from the fact that if higher density fluctuations than average are forbidden by 
the impenetrability of the scatterers, then lower density than average fluctuations must 
likewise be forbidden to maintain the average density. The ‘random’ case has been 
solved in general for a particle of arbitrary mass ( m )  and scatterers of arbitrary density 
( p )  and interaction strength u ( z )  = y S ( z ) ,  by scaling the inverse temperature into a 
variable K = y p p / a  where p = (kT)-’ and all the physical parameters are effectively 
contained in a = ( h ’ ~ / 2 m y ) ’ / ~ .  The correlated case has been solved for the case a = 1 
and pd = 0 .2  in order to illustrate the effects of non-randomness. 

In addition to calculating the variational approximation to the average partition 
function asymptotically for high and low temperature, nine other temperatures have 
been calculated. This information has been used to calculate approximate average 
densities of states for the particle by inverting an assumed Laplace transform relation 
between the variational estimate for the partition function and the approximate average 
density of states; this relationship is known to exist between the actual partition 
function and the density of states. It cannot be claimed that this approximation to the 
density of states is at the same level as the variational approximation is to the actual 
partition function due to the integral nature of the transform; however this seems a 
reasonable way of proceeding. 

2. Calculations and results 

In  one dimension, with Hamiltonians 

P 2  H(p ,  x )  = -+ c yS(x -xi) 
2m i = l  

constrained to a length L with N, L + 00 and NIL + p ,  with the Xi’s positioned with 
uniform probability except that no pair of them may be closer than some distance d, the 
average partition function per unit length has the following variational limit (Hernan- 
dez 1977, but changed to one dimension and scaled. A[K] is to be identified with 
C [ X I / ( Y P ) )  

(Z(P)) ,  P exp(-aKA[KI) 
L ( 4 7 r ) ’ l 2 U  (aK)’” 
I 

where, as previously noted, K = ypp /a ,  a = (h2p/2my)’12 and A[K] is a functional, 
desired at its minimum, 

AIKl=EK+L dy( 1-exp(-4(y)2)(1+42(y)) 
YP K -03 

p ( d l a )  

- p ( d / a )  

-&[(I + 2 4 ( ~  12) ~ x P ( - ~ ( Y  12) - 11 5 (1 - ~ x P [ - ~ ( Y  +W21) dX) , 

constrained by d2(y) dy = K, which is extremised to the above expression when the 
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real function 4 ( y )  obeys the nonlinear Schrodinger equation: 

p ( d / a )  

- p ( d / a )  
- a  exp(-+(y)2) I ( l - e x p [ - 4 ( y + ~ ) ~ l ) d ~ ) ]  . 

The minimum of A [ K ]  occurs when 4 ( y )  is even and nodeless. EK/yp is the eigenvalue 
of the equation, which must be determined. 

It should be noticed that for d = 0 the nonlinear Schrodinger equation has a local 
potential (due to the contact interaction yS(r)) and is independent of a.  A [ K ]  also 
becomes independent of a and thus it can be found in general. When d # 0 the equation 
has the more general nonlinear, nonlocal, potential and both 4 ( y )  and A[K] have an 
explicit dependence on a and pd. 

It may be verified that as K + 00, E ~ / y p  +. 0, and E ~ / y p  -* 1 as K + 0. The asymp- 
totic behavior of A[K] may be obtained variationally as K + 00 and yields the Lifshitz 
result (for pd = 0) as obtained by Luttinger (1976): 

lim A[K]  = 3(.rr/2K)’I3 (1 +pd)’I3. 
K-+W 

As K + 0, the result A [ K ]  + 1 - &K2(1 - 2pd)’ is obtained for pd < t .  This follows from 
noticing that 4 (y  ) must be slowly varying and small everywhere; thus expansion yields 
4“/4 -S-(1-2pd)qjZ for S = l - E ~ / y p  with solution 4(y)=[2S/(1-2pd)]’/’ 
sech S1”y and K =4S1/’/(1 -2pd) if pd<$ .  For t < p d  < 1 no solution exists with S 
small and positive since the effective potential is repulsive. This is reminiscent of the 
problem that arises in three dimensions in the absence of bound states; this problem will 
be discussed briefly later and requires further study. 

Numerical solutions for the equations have been obtained for integer values of 
K(1-9 or 12). The case with d = 0 is simplest. Since 1 -&/pd varies monotonically 
from 0 to 1 as K varies from 0 to 03, the equations were solved for various values of the 

.on then became possible to eigenvalue to obtain K and A[K]; high-accuracy interpola 
obtain the values in table 1. 

Defining an approximation to the density of states G ( E  
approximations of the average partition function to 

Ioa exp(--P€)G(E) de 

by equating the variational 

Table 1. Random configurations (the accuracy is believed to be at least seven figures). 

0.8043802 
0.3 3 045 09 
0.7605926 
0.8 1999330 
0.687 1399 
0.72304317 
0.8268792 
0.64702730 
0.61540568 
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yields 

~ x ~ ( - u K A [ K ] ) / K ” ~  = [ ( 4 ~ a ) ’ / ~ y G ( y p x / a ) ]  exp(-Kx) dx. lom 
The inversion of this Laplace transform was carried out using the N-(7-12) point 
methods (Bellman et a1 1966) which assume it is a smooth function, and use a weighted 
Legendre polynomial fit to change the equation to a matrix relation. Inversion of the 
matrix yields the function G at N points. 

The results of this procedure for a = 1 are shown in figure 1 together with the density 
of states for part of the lowest energy band of the Kronig-Penney model ( S  functions of 
strength y ,  at separation p-’ with a = 1) which lies in the interval 0.923 d E /  yp 
(Merzbacher 1970). For the region ~ / y p  > 4  the calculation of G(E) is quite near its 
high-energy asymptote: 

2 
T 

( ~ T ) ” ~ Y G ( E )  + { T [ E / ( ? ~ )  - l]}-’’*. 

Figure 1. A, calculated approximation to the average density of states of a particle, of mass 
m, in the field of ‘random’ configurations of 6-function scatterers of strength y anddensity p 
for h2p/2my = 1. B, low-energy part of the density of states, in the first band, for the 
Kronig-Penney model of 6-functions of strength y ordered to a density p with h2p/2my = 
1. The points are calculated, the curve sketched through them; inversion used the 7-9-point 
methods. 

The low-energy asymptote is, as previously noted, given by the Lifshitz result 

limG(E) - exp[ - (T’ y p / ~ ) ’ / ~ ] .  
a - 0  

The number of states represented by G(E) for E /  yp < 4 is equal, within b 2 % ,  to those 
represented by its asymptotic value in the interval 1 < E /  yp < 4; at higher energy the 
curves are essentially the same. As can be seen, the band-gaps and Van Hove 
singularities of ordered densities of states have disappeared in G(E) though a 
broadened peak remains as well as an asymptotically vanishing ‘tail’ at low energy. It is 
noteworthy that the Kronig-Penney model density of states in this figure is not the only 
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one consistent with the restriction a = 1; among other configurations, pairing atoms 
(superimposing them) at a separation 2 / p  yields a model of the same density (two atoms 
in 2 / p )  with the same average potential ( y p )  which, of course, is indistinguishable from 
single atoms of strength 2 y  at separation 2 / p .  Such a model, naturally, has a different 
density of states, shown in figure 2 and labelled B (first two bands lie in 0.740 s ~ / ( y p )  s 
s.rr and 4 . 1 1 6 s ~ / ( y p ) s . r r  ). In that figure, the result of the Laplace inversion for 
averaged ‘random’ configurations consistent with a = a  (note the scale changes relative 
to figure 1) is also shown. Relative to this curve are its asymptotes 

1 2  2 

and 

limG(E) - exp[ - ( ~ ~ y p / 4 ~ ) ’ / ~ ] ,  
<+O 

and comments about the area under it, which are comparable with those on figure 1. 

~:~ O L  0 

Figure 2. A, calculated approximation to the average density of states of a particle, of mass 
m, in the field of ‘random’ configurations of 6-function scatterers, of strength y and density p 
for h 2 p / 2 m y  = $. B, density of states in the first, and low-energy part of the second, bands 
for the Kronig-Penney model of 6 functions of strength 2 y  ordered to a density &J with 
h 2 p / 2 m y  = 1 (note: (h2/2m) x (density/strength) = $). The points are calculated, the curve 
sketched through them; inversion used the 7-9-point methods. 

Curves for G(E)  for any other value of a are easily obtained from the information in 
table 1 and the inversion procedure noted (Bellman et a1 1966). 

The ‘non-random’ case treated, a = 1, pd = 0.2, may be expected to show more 
structure for G(E) due to the forbidden configurations. In this case the nonlinear, 
nonlocal Schrodinger equations were solved iteratively. For a chosen K and a trial 
starting function the eigenvalue was determined to an accuracy of - by outward 
integration, 4 ( y )  was obtained, normalised, and iterated into a new potential in 
addition to being used to find A [ K ] .  After about 10 iterations memory was lost of the 
starting function and the results for A [ K ]  started oscillating. The subsequent, approx- 
imately 20, iterations for A [ K ]  were averaged and a root-mean-square deviation 
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found; the results are given in table 2. Calculations were carried out on an IBM 
360/155 computer. A run would take about 40 seconds, including compilation; this 
time was shortened by running groups of calculations with a previously compiled 
program. Explicit integrations used ‘Bode’s rule’ and the differential equation was 
integrated implicitly through Taylor expansions including terms up to the fifth deriva- 
tive; all calculations used double precision. The Laplace inversion was carried out, as 
before, with the results shown in figure 3. In order to clearly exhibit the second peak, 
K = 1-12 were calculated. The calculational uncertainties gave rise to maximum 
uncertainties of *0.001 €or the 10-point method, *0.005 for the 11-point method and 
*0*02 for the 12-point method, in units of the vertical scale of the figure. Clearly the 

Table 2. a = 1, pd = 0.2. The RMs deviation (from the average) is less than 2 x 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 

0.99241 195 
0.96918059 
0,93199346 
0,88696243 
0.84038418 
0.79586683 
0.75484659 
0,71763756 
0.68407228 
0,65381019 
0.626473 18 
0.60170095 

16 f I I 1 

E/YP 

Figure 3. Calculated approximation to the average density of states of a particle, of mass m, 
in the field of configurations of 6-function scatterers of strength y and average density p, for 
hzp/2my = 1, which are ‘random’ except that no pair of scatterers can be closer than a 
distance d = 0.2/p. The points are calculated with a larger uncertainty than those of the 
previous figures (see text); the curve is sketched through them. Inversion used the 
10-12-point methods and different symbols are used for each result: open circles, N = 12; 
open triangles, N = 11; closed circles, N = 10. 
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desire to use as many points as possible in order to improve the inversion procedure 
must be compromised with the calculational uncertainty achievable to yield reasonable 
uncertainties in the inversion. A small modulation can be observed between alternate 
points in each inversion; it has been averaged in sketching a line in the figure. Thus the 
dip and second peak in the calculated G ( E )  are real and reminiscent of the gap between 
the first and second bands in ordered configurations with two atoms per unit cell and 
unit cell dimension of 2 / p ;  the peak, of reinforcements of second band extrema, 
broadened. These remarks are somewhat speculative but, for example, three superim- 
posed atoms, i.e. astrength 3 y, at separation 3 / p  with h2p /2my  = 1, have a second band 
in the interval 2.424 S E /  yp s 4.386, completely astride the second gap in the KP result 
of figure 2; however, this is a forbidden configuration. Other authors have found gaps 
or pseudogaps in systems in which the atoms are not allowed to approach too closely 
(Makinson and Roberts 1960, Edwards 1961, Beeby and Edwards 1963, for example). 
Interpretation and further calculations of this type need to be extended. 

3. Comments 

We have been hesitant to extend the calculations to pd + 1 for two reasons. First, the 
inversion procedure would tend to filter out sharp structure (Bellman et a1 1966) which 
might be expected near the ordered case, pd = 1, though it is not clear what this 
variational method will yield. Also, the lack, at present, of analytic guidance on the 
high-energy, low-temperature, asymptote for pd > t is a problem as mentioned 
previously. Further work is in progress. 

As to three-dimensional calculations, for the ‘random’ &function case, calculations 
are no more difficult than in one dimension and related results have been reported 
(Hernandez 1975, Moore et a1 1978). There is a problem: analytically it can be shown 
that the present variational method, which is essentially a mean field theory, yields an 
approximation to the partition function which, although continuous, has a cusp at a 
specified temperature (a function of the strength and density of the potentials)-a 
stability transition between ‘unbound’ particles and ‘bound’ ones. This feature must be 
an artefact of the mean field approach. Since a cusp in the actual partition function 
would indicate a phase transition, this is hard to accept for scatterers fixed in place, even 
though the system is averaged. This cusp or stability change has been used as a signal of 
the electron mobility collapse in helium gas, in reasonable agreement with experimental 
measurements (Hernandez 1975). In nature, atoms may move, but not in the model 
being used. It would be interesting to see if beyond the mean field theory there are 
fluctuations which smooth the cusp; this also is a problem for the future. 

In summary, preliminary calculations based on the variational approximation to the 
average partition function of a particle interacting with a positionally disordered system 
of scatterers give apparently reasonable and interesting results which should be pursued 
further to show the limitations and successes of this method. 
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